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Consistent Calibration Estimation under Nonresponse Preface 

 

Preface 
Nonresponse is a threat to the reliability of sample survey statistics. 
Proper analysis and estimation methods have to be used to avoid 
misleading statistics due to nonresponse bias. Estimators based on 
the calibration approach have been shown to reduce nonresponse 
bias and is therefore used by statistical agencies. Improvement of the 
calibration approach to gain further insights into its properties and 
potentials are of great interest to Statistics Sweden. This research 
report deals with calibration estimation and presents new results 
useful for further development of the calibration approach. 
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Abstract 
This paper considers the consistency of the calibration estimator 
suggested by Särndal and Lundström (2005) for estimation in 
sample surveys under nonresponse. Formulating the calibration 
estimator in terms of a GREG estimator, the estimator is shown 
generally inconsistent as the population regression coefficient vector 
is inconsistently estimated. The sources to the inconsistency are 
detailed upon and a modified calibration estimator is suggested, 
along with new types of instrument variable vectors. Consistency is 
derived for the modified estimator and results from a simulation 
study encourage further research on the modified calibration 
estimator. 
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1. Introduction 
Calibration estimation in sample surveys has since its introduction 
by Deville and Särndal (1992) developed into an established theory 
and method for estimation of finite population parameters (see e.g. 
Särndal (2007) and Kim and Park (2010) for reviews). The core idea 
of the calibration estimation approach is to utilize auxiliary 
information by replacing the design weights in the Horwitz-
Thompson (HT) estimator with weights replicating known 
population totals when attached to auxiliary variables. Although the 
generalized regression (GREG) estimator can be derived as a special 
case of a calibration estimator, the approaches of utilizing auxiliary 
information in estimation are conceptually different. The GREG 
approach is based on the assumption of a linear relationship 
between the study variable and the vector of auxiliary variables. An 
assumption of such an assisting model is not necessary in the 
calibration approach (Särndal, 2007).  

Calibration against a small set of population totals does not uniquely 
determine the weights, and different approaches for reaching 
uniqueness have been considered. Deville and Särndal (1992) 
obtained uniqueness by minimizing a summary measure of the 
distances between design weights and calibrated weights. In the 
functional form approach, the weights are specified by a function of a 
variable vector, a function known up to an unknown parameter 
vector. Estevao and Särndal (2000; 2006) proposed the functional form 
approach and specified the calibration weight as a linear function of a 
variable vector. A more general functional form approach is 
considered by Kott (2006) who proposes a class of functions defined 
by the restriction to yield consistency of the calibration estimator. In 
the functional form approach the variable vector may include other 
variables then those included in the auxiliary variable vector. Here 
the term of an “instrument variable vector” has been adopted from 
the regression literature, and the functional form approach is often 
referred to as the “instrument vector method” (e.g. Särndal, 2007). 
The naming “functional form approach” is preferred here. The name 
“instrument vector method” does not reveal the essentiality in the 
method of specifying a known function.  

One part of the theory developed on calibration estimation is 
devoted to its potentials to adjust for nonresponse bias in sample 
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surveys (Lundström and Särndal, 1999; Särndal and Lundström, 
2005; Kott, 2006). However, although the calibration approach can 
be used to define estimators which are approximately unbiased and 
consistent in the full sample case, calibration estimators are biased 
and inconsistent under nonresponse in general. Särndal and 
Lundström (2005) provide several approximate bias expressions, 
providing guidelines on how to reduce bias by appropriate selection 
of auxiliary variables. Similar attempts to develop indicators and 
algorithms for selection of appropriate sets of auxiliary variables are 
found in e.g. Schouten (2007) and Särndal and Lundström (2008). 

Consistency of the calibration estimator is obtained in particular 
cases. One such case is considered by Kott (2006), Chang and Kott 
(2008) and Kott and Chang (2010) who study calibration estimators 
when the unit’s response probabilities are known functions of an 
instrument variable vector and an unknown parameter vector. One 
choice of functional form is to use the inverse of the response 
probability function. The calibration equations then serve as 
“estimating equations” providing consistent estimates of the 
unknown parameters in the response probability functions. This in 
turn renders consistency to the calibration estimator.  

This paper focuses on the consistency properties of the calibration 
estimator proposed by Särndal and Lundström (2005). Their 
estimator is defined with weights being a linear function of an 
instrument variable vector, and the purpose here is to study how 
this functional form approach can be utilized to reach consistency of 
the calibration estimator. For this a condition on the instrument 
variables for consistency is presented. Based on this instrument 
variable condition a small modification of the calibration estimator 
is suggested along with a new kind of instrument variables. The 
resulting calibration estimator is shown to yield consistency under 
appropriate selection of instrument variables. Indications on the 
finite population properties of the modified calibration estimator are 
provided by means of simulation.  

The calibration estimator proposed by Särndal and Lundström 
(2005) is defined in the next section and its consistency properties 
are discussed in Section 3. A modified calibration estimator is 
suggested in Section 4 along with an introduction of a new type of 
instrument vectors. The setup and results of a simulation study are 
reported in Section 5. A discussion of results and suggestions for 
future research are contained in the final section. Proofs of theorems 
are found in the Appendix.  
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2. The calibration estimator 
Consider a fixed, finite population U  of N units and a non-random, 
scalar study variable ky , Uk∈ . A probability sample Us ⊂  with 
expected sample size n(N) is selected from the population, using a 
probability sampling design )(sp , with the purpose of estimating 

the population total ∑= U kyY . Due to nonresponse observations 

are only obtained for a subset of the sample sr ⊂ . The response set 
is assumed random, generated from a conditional response 
distribution )( srq . The response distribution is assumed to imply a 

probability of a response from unit k, given its selection to a sample, 
equaling )Pr( skrkk ∈∈=θ . 

Let kx  denote a column vector of non-random auxiliary variables 

known for all units in r  and with population totals ∑= U kxX  

which are either known or estimated. The vector X~  is used to 
denote the vector X  where some or all elements may be replaced 
by estimates. 

The first order inclusion probability of unit Uk∈  is denoted kπ  

and 1−= kkd π  denotes the corresponding design weight. Also, let kz  

( rk∈ ) denote a known instrument vector with the same dimension 
as kx . Särndal and Lundström (2005) defines the calibration 
estimator 

 ∑= r kkW ywŶ  (2.1) 

where the calibration weights are defined by the system  

 ∑=
+=

=

r kk

krk

kkk

xwX

zv
dw

~
1 λ
ν

 (2.2) 
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This system yields ( ) ( ) 1 ~ −∑∑−=
r

t
kkk

t

r kkr xzdxdXλ . 

The calibration system (2.2) with kk xz =  is derived by Deville and 
Särndal (1992) in the full sample case by minimizing the Lagrange 
function 

 
( ) ( )∑∑ −+−=

s kksks kks xwXddwwL ~),( 2 λλ  

yielding the generalized regression (GREG) estimator. Following 
their results, implementing the weights defined by (2.2) in (2.1) 
yields 

 
)ˆ(ˆ~ˆ

r
t
kr kkr

t
W BxydBXY ∑ −+=  (2.3) 

where 

( ) ∑∑ −
=

r kkkr
t
kkkr yzdxzdB 1ˆ  (2.4) 

Consistency of the calibration estimator (2.1) is here treated by 
studying the asymptotic properties of (2.4). The following 
definitions are used for the study of consistency. 

Definition 1: (Sequence of populations) 

The variable vector ( )tt
k

t
kkk zxyt =  is non-random, real-valued 

and defined for a bounded set such that κ<kt  for some ∞<<κ0 . 

Assume existence of an infinite sequence { }∞=1kkt . The population NU  

is defined as the index set for the first N units in the sequence { }∞=1kkt  

with the associated set of variable vectors { }Nttt 21 .  

Definition 2: (Sequence of response sets) 
A probability sample NN Us ⊆  of expected size )(Nn  is drawn from 

NU  using a probability sampling design )(spN , yielding positive 

inclusion probabilities 0>> ςπ k  for all NUk∈ . Conditionally on 

the sample, observations of kt  are obtained for a subset of the sample, 

NN sr ⊆  due to non-response. The response set Nr  is generated 
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according to the response distribution )( NNN srq  yielding response 

probabilities )Pr( NNk skrk ∈∈=θ . 

Definition 3: (Consistency) 
Let ψ̂  denote an estimator of a population quantity ψ  defined on 
the finite population U . For the sequences of populations, samples 
and response sets in Definition 2, let Nψ̂  and Nψ  ,...)3,2,1( =N  

denote corresponding sequences of ψ̂  and ψ , respectively. Then ψ̂  
is defined as consistent for ψ  if  

 0)ˆ(lim =−→∞ NNNp ψψ  

A sequence of populations of the kind specified in Definition 1 is 
usually adapted when considering asymptotic properties of statistics 
in finite population settings (e.g. Särndal et al. 1992; Fuller, 2009). 
The assumption of having a sequence of populations where the 
increase in size is obtained by adding new units to the previous 
populations is not, however, necessary for the theoretical arguments 
to hold. The assumption of a real valued kt  means the elements can 
be real valued, but they can also take on values within a subset of 
the real numbers, e.g. the natural numbers. The limit statement in 
Definition 3 is in terms of a population size N approaching infinity, 
and not in terms of the sample size n. Due to the lower bound on the 
inclusion probability in Definition 2, the expected sample size will 
approach infinity when the population size does so.  
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3. Consistency of the 
calibration estimator 
Consider a census in which all units in the population are sampled. 
Then due to non-response the sums involved in the r.h.s. of (2.4) has 
expected values ( ) ∑∑ =

U
t
kkkU

t
kkUrq xzxzE θ)(  and 

( ) ∑∑ =
U kkkU kkUrq yzyzE θ)( , respectively. These quantities define 

the parameter vector 

 
( ) ∑∑ −

=
U kkkU

t
kkk yzxzB θθθ

1
 (3.1) 

Under a general sampling design, complying with Definition 2, the 

following theorem states rB̂  to be consistent for θB . 

Theorem 1: (Probability limit for rB̂ ) 

Assume definitions 1 and 2 and let NrB̂  and θNB  denote 

corresponding sequences of rB̂  and θB , respectively. Also assume i) 
the sampling design yields second order inclusion probabilities 

)&Pr( slkkl ∈=π  such that )1(1
,

2 oddN
lkU lkkl

N
=−∑∑ ≠

− π  and ii) 

∑−

NU
t
kkk xzN θ1  has a determinant bounded away from zero for 

0NN > , then 

 0)ˆ(lim =−∞→ θNNrN BBp  

A proof of Theorem 1 is given in the Appendix and it yields the 

following result for the calibration estimator WŶ . 

Corollary 1: (Consistency of WŶ ) 

Under the assumptions of Theorem 1, the assumption 1=k
t zµ  for 

all NUk ∈  and some nonzero vector µ , and 

0/)~(lim =−→∞ NXXp NNN , then 
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 0/)ˆ(lim =−→∞ NYYp NNWN θ . 

where θθ NNN BXY = . 

Corollary 1 follows from Theorem 1 and the consistency of X~ . The 

condition 1=k
t zµ  implies 0)ˆ( =−∑ r

t
kr kk Bxyd  in (2.3), and the 

corollary shows the calibration estimator (2.1) to be consistent for 

θθ XBY = , which is different from the population total ∑= U kyY , 

in general. The assumption 1=k
t zµ  implies UXBY =  where 

( ) ∑∑ −
=

U kkU
t
kkU yzxzB 1

. The result then yields the approximate 

bias expression 

 ( )UW BBXYBias −≈ θ)ˆ(  

which is one of the three equivalent nearbias expressions derived by 
Särndal and Lundström (2005, Corollary 9.1). Here Corollary 1 
shows that the inconsistency of the calibration estimator can be 

interpreted as a consequence of the inconsistency of rB̂  as an 

estimator of UB . 

An interesting problem is the restrictions imposed by the condition 
1=k

t zµ  on the consistency property of the calibration estimator. 

Consistency of rB̂  is obtained under the following instrument 
variable condition: 

Instrument Variable Condition: 0=∑U kkk ezθ  ; U
t
kkk Bxye −=   

Adding the condition 1=k
t zµ  yields 0=∑U kkeθ , i.e. the response 

probabilities are uncorrelated with the regression errors in the 
population. Thus, consistency of the calibration estimator (2.1) via 
consistent estimation of UB  cannot generally be achieved under the 

condition 1=k
t zµ . On the other hand, relaxing the condition does 

not improve the matter, since U
t BXY =  does not generally hold if 

1≠k
t zµ . Relaxing 1=k

t zµ  and with rB̂  consistent for UB  then 
(2.1) is consistent for  
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)( U

t
kU kkU

t
We BxyBXY ∑ −+= θ  

This quantity is equal to Y  if 0)1( =−∑U kk eθ , where 0≠∑U ke  in 

general. 

Consistency of WŶ  can be obtained in cases with UBB ≠θ . For 
instance, the result of zero “nearbias” of the calibration estimator 
under 1=k

t zµ  and the additional assumption k
t

kk zηθφ == −1 , for 
some vector of constants η , is derived by Särndal and Lundström 

(2005, Prop. 9.2). Consistency is obtained since θB  satisfies 

0)( =−∑U k
t
kkk zBxy θθ  and multiplying from the left with tη  yields 

0)( =−=−∑ θθ BXYBxy t
U

t
kk . Furthermore, by relaxing 1=k

t zµ  

and assuming k
t

k zηφ +=1  yields 0)1)(( =−−∑U k
t
kkk Bxy φθ θ , 

implying ∑ −+=
U

t
kkk

t BxyBXY )( θθ θ  and consistency of WŶ . 

Consistency of WŶ  under the assumed functions for kφ  can also be 

obtained by the result ηλ =∞→ rNp lim  (Kott and Chang, 2010). This 

result implies kv  in (2.2) to be consistent estimates of kφ . The linear 
form assumed for kφ  is restrictive and more general forms of 
functions are considered by Kott (2006), Chang and Kott (2008) and 
Kott and Chang (2010). 
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4. A modified calibration 
estimator 
Schouten (2007) makes use of a super population model approach 
and shows zero bias of the GREG estimator under a MAR (Missing 
at Random) response mechanism. The MAR condition implies 
conditional independence of the response and the study variable, 
given a set of auxiliary variables. Treat kz  and ke  as realizations of 
the random variables z and e, respectively, and interpret the 
response indicator ( )skrkRk ∈∈= 1  as a realization of the random 

indicator variable R. Then one interpretation of the MAR condition 
is 0))(()( == zRezEERzeE z , which would imply zero expectation 

of the sum of Rze over a selected sample. The instrument variable 
condition ( ) 0== ∑∑ U kkkU kkk ezREezθ  can thus be seen as a MAR 

condition in the pseudo randomization setting. An important 
distinction is that the MAR condition puts restrictions on individual 
observations, while the instrument variable condition puts a 
restriction on a vector sum over the units in the population.  

One way of defining an estimator rB̂  consistent for UB , is to find an 
instrument vector satisfying the instrument variable condition. 
Unfortunately, this is not sufficient for consistency of the resulting 
calibration estimator, as shown in the previous section. To solve the 
dilemma a calibration estimator defined with two instrument 
variable vectors is suggested. The first is denoted as kz  and is 
assumed to satisfy the instrument variable condition, and the second 
is denoted as Bkz  assumed to satisfy the unity condition 1=Bk

t zµ . 
The second instrument vector is utilized for defining the population 

regression vector ( ) ∑∑ −
=

U kBkU
t
kBkBU yzxzzB 1)( . (An argument (

Bz ) is introduced to stress the dependence on the chosen instrument 
vector.) The first instrument vector then yields an estimator 

( ) ∑∑ −
=

r kkkr
t
kkkr yzdxzdzB 1)(ˆ  which is consistent, since it is 

assumed to satisfy the instrument variable condition. The calibration 
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estimator suggested is )(ˆ~ˆ zBXY r
t

MW =  which in the weighted sum 
form equals 

 ∑= r kMkWM yzwzY )()(ˆ   (4.1) 

with weights  

 
( ) kkr

t
kkk

t
Mk zdxzdXzw 1~)( −∑=  

The weights )(zwMk  are defined in Särndal and Lundström (2005, 
Sec. 6.8) and by them suggested to constitute the main part of the 
weights given by (2.2). They also notice that the weights given by 
(2.2) reduce to the weights )(zwMk  under the condition 1=k

t zµ . 
Here, the weights are suggested for the calibration estimator 
irrespective if the condition 1=k

t zµ  is satisfied or not. It can be 
noted that estimator (4.1) is a “synthetic” estimator, which is biased 
in general (e.g. Lehtonen and Pahkinen, 2004, p. 198). However, 
under appropriate selection of instrument variables, the synthetic 
estimator (4.1) is consistent for an unbiased instrument variable 
GREG estimator.  

A simple example of the estimator is kBk xz = , where the auxiliary 

vector includes a constant term, and kkk xz φ= . Then )(xBXY U
t=  

and )(ˆ xBr φ  is consistent for )(xBU  by Theorem 1 and since 

0==∑∑ U kkU kkk exezθ . Then )(ˆˆ xBXY r
t

WM φ=  is consistent for Y  

by Corollary 1. 

The two sets of instrument variable vectors considered are below 
named as Theoretical instruments ( Bkz ) and Operational instruments (

kz ). In the example above, the theoretical instruments were chosen 

as the known and observable vector kx . In general the theoretical 
instruments can be unobservable, theoretical concepts. 

In practice it is likely that the operational instruments are calculated 
from the data at hand, e.g. the response set or the sample, providing 
“approximate” instruments or estimated instruments. In the 
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propensity scoring example above, i.e. )ˆ(ˆ xBr φ , the inverse response 

probability are replaced by estimates kφ̂  yielding a propensity 

scoring estimator )ˆ(ˆ xBr φ  of )(xBU , and not the estimator )(ˆ xBr φ . 
Thus, the consistency property of the calibration estimator (4.1) has 
to be considered when it is defined with such “estimated” 
instruments. For this, the following definition and assumption are 
made.  

Definition 1A: (Sequence of populations) 

The variable vector ( )tt
Bk

t
k

t
kkk zzxyt =  is non-random, real-

valued and defined for a bounded set such that κ<kt  for some 

∞<<κ0 . Assume the existence of the infinite sequence { }∞=1kkt . The 

population NU  is then defined as the index set for the first N units 

in the sequence { }∞=1kkt  with the associated set of variable vectors 

{ }Nttt 21 .  

Assumption 1: (Uniform convergence of estimated operational  
instruments kz~ ) 

Let kz~  )( rk ∈  denote estimates of the corresponding unknown 

vectors kz  )( rk ∈ . For sufficiently large N, Nkk zz ωΜ<−~  where 

Μ  is a finite positive constant, and )1(pN o=ω  is a random scalar 

term. 

If )~(ˆ zBr  is consistent for )(zBθ  and )(zBθ  equals )( BU zB , then 

)~(ˆ zBr  is consistent for )( BU zB  whereby consistency of the 

calibration estimator (4.1) is obtained. The probability limit of )~(ˆ zBr  
is stated in the following theorem.  

Theorem 2: (Consistency of )~(ˆ zBr  for )(zBθ ) 

Assume definitions 1A and 2, and let )~(ˆ zBNr  and )( BNU zB  denote 

corresponding sequences of )~(ˆ zBr  and )( BU zB . Assume 
Assumption 1, i) the sampling design yields second order inclusion 
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probabilities )&Pr( slkkl ∈=π  such that 

)1(1
,

2 oddN
lkU lkkl

N
=−∑∑ ≠

− π , and ii) the determinant of 

∑
NU

t
kkk xzθ  is bounded away from zero for all 0NN > , then 

 0))()~(ˆ(lim =−→∞ zBzBp NNrN θ  

A proof of Theorem 2 is given in the Appendix. Theorem 2 gives the 
following corollary. 

Corollary 2: (Consistency of WMŶ ) 

If )()( BU zBzB =θ  and the assumptions of Theorem 2 and the 

assumption 0/)~(lim =−→∞ NXXp NNN  holds, then 

0/)ˆ(lim =−→∞ NYYp NWMNN . 

where )~(ˆ~ˆ zBXY Nr
t

WMN = . 

Corollary 2 establishes the consistency of the calibration estimator 
(4.1) as an estimator of the population total Y. 
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5. Examples 
The modified calibration estimator suggested in Section 4 is here 
illustrated with two examples of operational instrument vectors. The 

first is the case considered above using kkk xz φ̂= . The second uses 
instruments derived from a specification of an assisting model for 
the response set data. For both cases the theoretical instrument 
vector is defined as kBk xz = . A numerical illustration of the 
performance of the estimators is presented in the end of this section. 

5.1 Instruments by weighting auxiliary variables 
Consider the response probability function )( 0αθ t

kk uG=  where ku  

is a real valued bounded vector ( ∞<< κku ), known for units in 

the sample, and A∈0α  is a corresponding real valued vector of 
unknown, fixed parameters, taking on a value within a bounded 

parameter space A . The length of ku  is assumed fixed and )( αtkuG , 

A∈α , is assumed bounded away from zero and one, i.e. 
1)(0 10 <<<< τατ t

kuG , for all Uk ∈ . 

With a sampling design, consider the design weighted log likelihood 
function 

 
( )∑ −−+= −

s
t
kkk

t
kkks uGRduGRdNl ))(1log()1())(log()( 1 ααα  

and the design weighted maximum likelihood estimator 

 )(maxargˆ αα ss l=  

Consistency of sα̂  implies Assumption 1 since 

0
2

1
1

0
1 ˆ)()ˆ( ααταα −⋅<− −−−

sk
t
ks

t
k uuGuG . A  formal proof of the 

consistency of sα̂ , is out of the scope of this paper. However, 
consistency can be derived by showing uniform convergence in 
probability of )(αsl  to 
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 ∑ −−+== −
U

t
kk

t
kksU uGuGNlEl ))(1log()1())(log())(()( 1 αθαθαα  

a function that is uniquely maximized over A at 0αα =  for 

sufficiently large N. Consistency of sα̂  can then be established by 
similar arguments as in the proof of Lemma 2.2 in White (1980). 

5.2 Assisting model for response set data 
The assisting model underlying the GREG estimator is of the form 

kU
t
kk eBxy += , where the properties of the “errors” ke  are defined 

by the definition of UB . With UB  being the population least squares 
(LS) solution, the corresponding design weighted LS solution for a 
sample under full response is consistent for UB . 

For observations obtained in a response set r, consider the assisting 

model kkU
t
kk Bxy ωη ++= . Here, kη  is defined as a “systematic” 

component such that ∑∑ =
U kkkU kkk exx θηθ  and kω  is an 

“irregular” component such that 0=∑U kkk x ωθ  and 

0=∑U kkk ωηθ . 

For the population, consider the instrument δηkkk xz −= , where 

( ) ∑∑ −
=

U kkkU kk xηθηθδ
12  is a vector with population fits of θ  

weighted, through the origin, least squares regressions of the 
elements in kx  on kη . Note here that δ  is a vector with a slope 

coefficient for each element in kx . These instruments have the 

property 0)( =+∑U kkkk z ωηθ  whereby )(ˆ zBr  is consistent for UB . 

Unfortunately kη  is not observable. However, assume kη  can be 
described by a function known up to a finite set of coefficients, e.g. 

),( 0αηη kk u= , where the arguments are defined as in subsection 

5.1. Also, assume there exists a consistent estimator sα̂  of 0α . Then 

instruments can be formed by δη ˆˆ~
kkk xz −=  where )ˆ,(ˆ skk u αηη =  

and ( ) ∑∑ −
=

U kkkr kk xηθηθδ ˆˆˆ 12 . Under suitable assumptions, e.g. 
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boundedness of ),( 0αηη kk u=  and existence of ∑U kk
2ηθ , 

δδ =∞→ NNp ˆlim  and Assumption 1 holds for the instrument vector 

δη ˆˆ~
kkk xz −= . )~(ˆ zBr  is then consistent for UB  and the calibration 

estimator (4.1) is consistent for the population total Y . 

One alternative for the specification of the function ),( 0αηη kk u=  is 

provided by Heckman (1979) where )(/)(),( αααη t
k

t
kk uufu Φ= , 

the ratio of the standard normal pdf to its cdf. This function is 
derived from assuming a probit model for the response probability 
function, e.g. )0(1)( 00 kk

t
k

t
kk uuEu >+=Φ= ϕααθ  with )1,0(~ Nϕ , 

and ke  assumed to be a realization of a normal distributed random 

variable. The normal distribution assumption for ke  can be replaced 

by the moment assumption kkkk ReE ρϕϕ == ),1(  (Wooldridge, 

2002). Estimates sα̂  can be obtained by applying the design 
weighted ML estimator defined in the previous subsection. 

5.3 Numerical illustration 
A small simulation study is used to illustrate the empirical 
properties of the estimator (4.1) based on the instruments considered 
in subsections 5.1 and 5.2. The instruments are derived using 

)( αθ t
kk uΦ=  and )(/)(),( αααη t

k
t
kk uufu Φ= , respectively. For 

both cases the design weighted probit ML estimator sα̂  is used.  

Population data is simulated from the following model:  

 ϕααα

εββ

+++=

++=

uyR
xy

210
*

10
 

(5.1) 

where y  represents the variable under study, x  and u  are auxiliary 

variables with known population totals and *R  is a variable 
generating a response if 0* >R  and a non-response if not. The 
variables x  and u  are independently generated from uniform 

distributions in 32,0( ), yielding 3)()( == uExE  and 
1)()( == uVxV . The variables ε  and ϕ  are independently 
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generated from distributions with zero means and variances 1. The 
parameter 1α  is set to control the correlation between ϕεα += 1v  
and ε , governing the strength of the relation between the study 
variable and the nonresponse mechanism. The parameters 1β  and 

2α  are used to control the population R2s in the regression model for 

the study variable and the regression of *R  on x  and u . Finally, 
50 =β  while 0α  is used to control the response rate. The following 

two sets of population models are used in the simulations. 

i) Population model Norm(ε )/Norm(ϕ ): The population R2s in the 

regression model for the study variable and in the regression *R  
on x  and u , are both 0.5. The variables ε  and ϕ  are both 
generated from normal distributions. Expected response rates are 
60%.  

ii) Population model Unif(ε )/Unif(u): As in i) but with ε  and ϕ  
generated from uniform distributions. Response rates are around 
58%. 

For each of the two population models, finite populations 

4321 UUUU ⊂⊂⊂ of sizes N=2000, 5000, 10000, 20000 units are 
generated. For the generated populations, samples of sizes n=N/10 
are drawn with SRS, without replacement, and response sets are 
generated using the generated values on *R . For each generated 
population, samples and response sets are replicated 1000 times. 

For comparison, the calibration estimator (2.1) is applied in two 
versions; one using the auxiliary vector ) ,1( x  and one using the 
auxiliary vector ), ,1( ux . These calibration estimators are applied 

with standard weights, i.e. kk xz = . For the estimator (4.1), the 
auxiliary vector ) ,1( x  is used and the instruments defined in 
subsection (5.1) and (5.2) are constructed using 

)ˆˆˆ(/1ˆ
210 ux sss αααφ ++Φ=  and )ˆˆˆ(ˆ 210 ux sss αααηη ++= , 

respectively. 
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Table 1: 
Simulated Bias and St.dev (in parenthesis) of the population mean 

calibration estimators NYY WW /ˆˆ =  and NzYY WMWM /)(ˆˆ =  (c.f. 
equations (2.1) and (4.1), respectively). Population generated from the 
population model Norm(ε )/Norm(u), for different sample sizes n and 
correlations ),( ερ vCorr=  (c.f. model (5.1)). Results based on 1000 
replications 

  Sample/Population size (n/N) 

Estimatora) ρ  200/2000 500/5000 1000/10000 2000/20000 

)1(ˆ xYW  
 

0 -.034 
(.090) 

.017 
(.058) 

-.004 
(.039) 

.007 
(.028) 

0.1 .013 
(.090) 

.067 
(.058) 

.043 
(.039) 

.050 
(.028) 

0.3 .115 
(.092) 

.164 
(.058) 

.150 
(.038) 

.152 
(.028) 

)2(ˆ xYW  0 -.026 
(.107) 

.008 
(.072) 

.004 
(.045) 

.010 
(.033) 

0.1 .048 
(.111) 

.079 
(.071) 

.074 
(.044) 

.073 
(.033) 

0.3 .198 
(.108) 

.218 
(.065) 

.212 
(.042) 

.212 
(.031) 

)1(ˆ zYWM  0 -.035 
(.126) 

.002 
(.086) 

.010 
(.047) 

.009 
(.037) 

0.1 .035 
(.125) 

.075 
(.083) 

.079 
(.048) 

.072 
(.037) 

0.3 .197 
(.120) 

.226 
(.074) 

.218 
(.046) 

.226 
(.037) 

)2(ˆ zYWM  0 -.048 
(.139) 

.035 
(.084) 

-.020 
(.060) 

.002 
(.042) 

0.1 -.046 
(.142) 

.049 
(.086) 

-.016 
(.060) 

.010 
(.042) 

0.3 -.078 
(.158) 

.052 
(.095) 

-.011 
(.067) 

.003 
(.047) 

a) Auxiliary/Instrument vectors: x1=(1 x)t, x2=(1 x u)t, z1= φ̂ x1, z2= x1- ηδ ˆˆ . 
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Table 1 includes simulation results under the Norm(ε )/Norm(ϕ) 
model, meaning that the assumptions of the model considered by 
Heckman (1979) are satisfied. The calibration estimator (4.1) based 
on the instrument variables considered in subsection 5.2 is therefore 
expected to perform well with regard to bias. 

In the case of 0=ρ , implying independence between the response 
indicator and the study variable, all estimators in Table 1 have 
biases tending to zero when the sample size increases. The standard 
deviations for all the estimators also decrease with the sample size, 
which is also observed for the other values of ρ . The results 
observed for all estimators are compatible with an expected pattern 
of consistent estimators when 0=ρ . 

Also as expected, when 1.0=ρ  or 3.0=ρ  this “consistency 

pattern” is only observed for the estimator )2(ˆ zYWM . For the other 
estimators, the standard deviations decrease with the sample size, 
but the biases do not. The observation is also that the biases are 
increasing with ρ  for these estimators. 

The consistency property of the estimator )2(ˆ zYWM  comes at the 
price of a larger variance then the other estimators. The RMSE of 

)2(ˆ zYWM  is around 50% higher in comparison with )1(ˆ xYW  for 0=ρ

. For 3.0=ρ  the RMSE is smaller for )2(ˆ zYWM  compared to )1(ˆ xYW  
with the exception of the n=200 case, where the RMSEs are about the 

same. For the two smallest sample sizes when 1.0=ρ , )1(ˆ xYW  has 

smaller MSE then )2(ˆ zYWM , while it is about the same for n=1000 

and smaller for )2(ˆ zYWM  when n=2000. 
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Table 2: 
Simulated Bias and St.dev (in parenthesis) of the population mean 

calibration estimators NYY WW /ˆˆ =  and NzYY WMWM /)(ˆˆ =  (c.f. 
equations (2.1) and (4.1), respectively). Population generated from the 
population model Uniform(ε )/Uniform(u), for different sample sizes n 
and correlations ),( ερ vCorr=  (c.f. model (5.1)). Results based on 
1000 replications 

  Sample/Population size (n/N) 

Estimatora) ρ  200/2000 500/5000 1000/10000 2000/20000 

)1(ˆ xYW  
 

0 -.010 
(.086) 

.012 
(.054) 

.017 
(.039) 

.001 
(.029) 

0.1 .039 
(.086) 

.059 
(.054) 

.059 
(.039) 

.047 
(.029) 

0.3 .116 
(.086) 

.155 
(.054) 

.154 
(.039) 

.152 
(.028) 

)2(ˆ xYW  0 -.032 
(.098) 

.007 
(.061) 

.018 
(.044) 

-.002 
(.033) 

0.1 .044 
(.097) 

.071 
(.061) 

.078 
(.044) 

.060 
(.032) 

0.3 .136 
(.094) 

.193 
(.060) 

.194 
(.042) 

.190 
(.031) 

)1(ˆ zYWM  0 -.036 
(.106) 

.005 
(.067) 

.019 
(.048) 

-.002 
(.035) 

0.1 .047 
(.102) 

.077 
(.067) 

.082 
(.047) 

.064 
(.035) 

0.3 .154 
(.096) 

.206 
(.064) 

.209 
(.043) 

.207 
(.031) 

)2(ˆ zYWM  0 .046 
(.136) 

.026 
(.086) 

.013 
(.060) 

.007 
(.045) 

0.1 .026 
(.143) 

.028 
(.087) 

.017 
(.061) 

.017 
(.045) 

0.3 .033 
(.165) 

.032 
(.099) 

.033 
(.067) 

.025 
(.051) 

a) Auxiliary/Instrument vectors: x1=(1 x)t, x2=(1 x u)t, z1= φ̂ x1, z2= x1- ηδ ˆˆ . 
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Although the assumptions in the model considered by Heckman 
(1979) are not satisfied in the Uniform(ε )/Uniform(ϕ) case 
considered in Table 2, the results show a similar pattern as the one 
in Table 1. All estimators have decreasing biases and standard 
deviations as the sample size increase in the 0=ρ  case. For the 

other values of ρ  this is only observed for )2(ˆ zYWM . However, 

)2(ˆ zYWM  is not consistent in the Uniform(ε )/Uniform(ϕ) case, a fact 
indicated by the slight increase in bias for increasing ρ . Still, 
estimates of the bias are much smaller than those of the other 

estimators. The pattern of RMSE for )2(ˆ zYWM  in comparison with 

)1(ˆ xYW  is the same in Table 2 as in Table 1. 
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6. Summary 
This paper is concerned with the consistency properties of the 
calibration estimator suggested by Lundström and Särndal (1999) 
and Särndal and Lundström (2005). It is shown that the calibration 
estimator is generally inconsistent. This does not come as a surprise 
since the estimator is already known to have a non-zero 
approximate bias. Efforts have also been made in the literature to 
find ways of selecting auxiliary information in order to reduce bias 
as much as possible. In these contributions, the calibration estimator 
considered has been based on “standard weights” where the 
auxiliary vector is used as the instrument vector. 

The prospect of defining a generally consistent calibration estimator 
based on a standard weights formulation is limited. The auxiliary 
variable vector does not generally satisfy the instrument variable 
condition, and the success of reducing bias in the standard weight 
version of the calibration estimator depends on how well the 
auxiliary variables i) “explains” the variation in the study variable, 
and ii) how well a linear combination of them approximates the 
inverses of response probabilities (Särndal and Lundström, 2005). 
Similar results are presented by Schouten (2007), who derive bounds 
on the bias of the GREG estimator in terms of correlations between 
auxiliary variables and the study variable, and between auxiliary 
variables and the response indicator. 

Instead of the standard weight formulation, it is here suggested to 
place focus on the potentials of defining an instrument variable 
vector different from the auxiliary variable vector. Rewriting the 
calibration estimator in terms of a GREG estimator formulation, the 
non response bias can be interpreted in terms of a correlation 
between auxiliary variables (regressors) and the regression error 
term. Adapting the idea of instrument variable estimation suggests 
finding an appropriate instrument vector for the calibration 
estimator. However, for this approach to work the formulation of 
the calibration estimator must be modified as suggested. 

Two examples of instrument vectors for the proposed calibration 
estimator are given in the simulation presented. The purpose of the 
simulation study is to provide an indication of the potentials of the 
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suggested estimator. The instrument vectors considered are mere 
illustrations, not suggestions for general use. More work is needed 
for defining instrument vectors which satisfies the instrument 
variable condition under more general population and response 
distribution settings. An encouraging fact is that the instrument 
variable condition imposes restriction on a fixed and small number 
of weighted population covariances, and may be satisfied without 
consistent estimation of parameters for each unit in the response set. 
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Appendix 
The proofs of theorems 1 and 2 utilize the following lemma. 

Lemma 1: 
Under definitions 1 and 2, and the assumptions in Theorem 1, 
consider the statistic ∑−=

Nr kkN cdN 1ψ̂ , where kc  ),...,1( Nk =  are 

non-random real valued scalars, bounded by ∞<<κkc . Then 

0)ˆ(lim =−→∞ θψψ NNNp  where ∑−=
NU kkN cN θψ θ

1 . 

Proof of Lemma 1: 
The design weight kd  is bounded by assumption whereby Nψ̂  

exists. Using the sample inclusion indicators )(1 skIk ∈=  and the 

response indicators )(1 skrkRk ∈∈= , the expected value of Nψ̂  can 

be expressed as ( ) ( ) θψθψ NU kkkkU kkN
NN

cNcdRIENE === ∑∑ −− 11ˆ . 

For the variance of Nψ̂   

( ) ( )
( )( )

)1(1

1)()(

)(ˆ

,
22211

,
122

,
1212

oddNN

cccdN

cccccNV

lkU lkkl

lklkU lklkklU kkkk

lkU lklklkU lklkklU kkkN

N

NN

NNN

=−+≤

−+−=

−+=

∑∑
∑∑∑

∑∑∑∑∑

≠
−−−

≠
−−

≠
−−−

πκκς

θθπππθθ

θθθθπππθπψ

Thus, 0)ˆ( →NV ψ  when ∞→N . Chebychev’s inequality then provides 
with the result in the lemma. 

Proof of Theorem 1. 
Note that ( ) ∑∑ −− =

Nn U
t
kkkr

t
kkk xzNxzdNE θ11  has a determinant 

bounded away from zero for 0NN > . This implies that θNB  exists 

and is bounded. The regression error θθ N
t
kkk Bxye −=  is then also 

bounded since kt  is assumed bounded. Lemma 1 gives 

( ) 0lim 11 =− ∑∑ −−
∞→

Nn U
t
kkkr

t
kkkN xzNxzdNp θ  whereby the 

estimator NrB̂  will also exist for N sufficiently large. The estimator 
can be written as 
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( ) ∑∑ −−−+=

NN r kkkr
t
kkkNNr ezdNxzdNBB θθ

111ˆ  

Here ( ) 011 == ∑∑ −−

Nn U kkkr kkk ezNezdNE θθ θ , since θNB  is the 

solution to the moment condition 0)( =−∑
NU N

t
kkkk Bxyz θθ . Again 

using Lemma 1, 0lim 1 =∑−
→∞

Nr kkkN ezdNp θ . Proposition 2.30 in 

White (2000) then yields 

( ) 0lim 111 =∑∑ −−−
→∞

NN r kkkr
t
kkkN ezdNxzdNp θ  and the statement in 

the theorem is obtained. 

Proof of Theorem 2. 
The estimated operational instruments are uniformly bounded 

Nkk Mzz ω⋅<−~  by assumption. Consider 

)1()~( 11
pNr kjkr kkkjkNrj oMxdNzzxdNA

nn
=⋅⋅≤−= ∑∑ −− ω , 

where kjx  denotes the jth element in kx . Thus 

)1(~ 11
pr

t
kHkkr

t
kHkk oxzdNxzdN

nn
=− ∑∑ −− . By applying Lemma 1 

)1(11
pU

t
kkkr

t
kkk oxzNxzdN

Nn
=− ∑∑ −− θ . Combining these two 

results in the triangular inequality yields 
)1(~ 11

pU
t
kkkr

t
kkk oxzNxzdN

Nn
=− ∑∑ −− θ . Using similar derivations 

the result )1(~ 11
pU kkkr kkk oyzNyzdN

Nn
=− ∑∑ −− θ  is obtained. The 

inverse of ∑−

NU
t
kkk xzN θ1  is assumed to exist for 0NN > , implying 

the existence of the solution )(zBNθ . Since 

)1(~ 11
pU

t
kkkr

t
kkk oxzNxzdN

Nn
=− ∑∑ −− θ  this implies that )~(ˆ zB

Nr
 

also exists for all N sufficiently large. Finally, using Corollary 2.30 in 
White (2000) on the results derived yields the result 

0))()~(ˆ(lim =−∞→ zBzBp NNrN θ .  
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