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Consistent Calibration Estimation under Nonresponse Preface

Preface

Nonresponse is a threat to the reliability of sample survey statistics.
Proper analysis and estimation methods have to be used to avoid
misleading statistics due to nonresponse bias. Estimators based on
the calibration approach have been shown to reduce nonresponse
bias and is therefore used by statistical agencies. Improvement of the
calibration approach to gain further insights into its properties and
potentials are of great interest to Statistics Sweden. This research
report deals with calibration estimation and presents new results
useful for further development of the calibration approach.

Statistics Sweden, November 2012

Lilli Japec
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Consistent Calibration Estimation under Nonresponse Abstract

Abstract

This paper considers the consistency of the calibration estimator
suggested by Sdarndal and Lundstrom (2005) for estimation in
sample surveys under nonresponse. Formulating the calibration
estimator in terms of a GREG estimator, the estimator is shown
generally inconsistent as the population regression coefficient vector
is inconsistently estimated. The sources to the inconsistency are
detailed upon and a modified calibration estimator is suggested,
along with new types of instrument variable vectors. Consistency is
derived for the modified estimator and results from a simulation
study encourage further research on the modified calibration
estimator.
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Consistent Calibration Estimation under Nonresponse Introduction

1. Introduction

Calibration estimation in sample surveys has since its introduction
by Deville and Sarndal (1992) developed into an established theory
and method for estimation of finite population parameters (see e.g.
Sarndal (2007) and Kim and Park (2010) for reviews). The core idea
of the calibration estimation approach is to utilize auxiliary
information by replacing the design weights in the Horwitz-
Thompson (HT) estimator with weights replicating known
population totals when attached to auxiliary variables. Although the
generalized regression (GREG) estimator can be derived as a special
case of a calibration estimator, the approaches of utilizing auxiliary
information in estimation are conceptually different. The GREG
approach is based on the assumption of a linear relationship
between the study variable and the vector of auxiliary variables. An
assumption of such an assisting model is not necessary in the
calibration approach (Sarndal, 2007).

Calibration against a small set of population totals does not uniquely
determine the weights, and different approaches for reaching
uniqueness have been considered. Deville and Sarndal (1992)
obtained uniqueness by minimizing a summary measure of the
distances between design weights and calibrated weights. In the
functional form approach, the weights are specified by a function of a
variable vector, a function known up to an unknown parameter
vector. Estevao and Sarndal (2000; 2006) proposed the functional form
approach and specified the calibration weight as a linear function of a
variable vector. A more general functional form approach is
considered by Kott (2006) who proposes a class of functions defined
by the restriction to yield consistency of the calibration estimator. In
the functional form approach the variable vector may include other
variables then those included in the auxiliary variable vector. Here
the term of an “instrument variable vector” has been adopted from
the regression literature, and the functional form approach is often
referred to as the “instrument vector method” (e.g. Sarndal, 2007).
The naming “functional form approach” is preferred here. The name
“instrument vector method” does not reveal the essentiality in the
method of specifying a known function.

One part of the theory developed on calibration estimation is
devoted to its potentials to adjust for nonresponse bias in sample

Statistics Sweden 9



Introduction Consistent Calibration Estimation under Nonresponse

surveys (Lundstrom and Sarndal, 1999; Sarndal and Lundstrom,
2005; Kott, 2006). However, although the calibration approach can
be used to define estimators which are approximately unbiased and
consistent in the full sample case, calibration estimators are biased
and inconsistent under nonresponse in general. Sdrndal and
Lundstréom (2005) provide several approximate bias expressions,
providing guidelines on how to reduce bias by appropriate selection
of auxiliary variables. Similar attempts to develop indicators and
algorithms for selection of appropriate sets of auxiliary variables are
found in e.g. Schouten (2007) and Sarndal and Lundstrom (2008).

Consistency of the calibration estimator is obtained in particular
cases. One such case is considered by Kott (2006), Chang and Kott
(2008) and Kott and Chang (2010) who study calibration estimators
when the unit’s response probabilities are known functions of an
instrument variable vector and an unknown parameter vector. One
choice of functional form is to use the inverse of the response
probability function. The calibration equations then serve as
“estimating equations” providing consistent estimates of the
unknown parameters in the response probability functions. This in
turn renders consistency to the calibration estimator.

This paper focuses on the consistency properties of the calibration
estimator proposed by Sarndal and Lundstrém (2005). Their
estimator is defined with weights being a linear function of an
instrument variable vector, and the purpose here is to study how
this functional form approach can be utilized to reach consistency of
the calibration estimator. For this a condition on the instrument
variables for consistency is presented. Based on this instrument
variable condition a small modification of the calibration estimator
is suggested along with a new kind of instrument variables. The
resulting calibration estimator is shown to yield consistency under
appropriate selection of instrument variables. Indications on the
finite population properties of the modified calibration estimator are
provided by means of simulation.

The calibration estimator proposed by Sdarndal and Lundstrom
(2005) is defined in the next section and its consistency properties
are discussed in Section 3. A modified calibration estimator is
suggested in Section 4 along with an introduction of a new type of
instrument vectors. The setup and results of a simulation study are
reported in Section 5. A discussion of results and suggestions for
future research are contained in the final section. Proofs of theorems
are found in the Appendix.

10 Statistics Sweden



Consistent Calibration Estimation under Nonresponse — The calibration estimator

2. The calibration estimator

Consider a fixed, finite population U of N units and a non-random,
scalar study variable Y, , k €U . A probability sample ScU with

expected sample size n(N) is selected from the population, using a
probability sampling design p(S), with the purpose of estimating

the population total Y = ZU Y\ - Due to nonresponse observations

are only obtained for a subset of the sample I — S. The response set
is assumed random, generated from a conditional response

distribution q(r|s) . The response distribution is assumed to imply a
probability of a response from unit k, given its selection to a sample,
equaling 6, =Pr(k € r|k €S).

Let X, denote a column vector of non-random auxiliary variables

known for all units in I and with population totals X = ZU Xy

which are either known or estimated. The vector X is used to
denote the vector X where some or all elements may be replaced
by estimates.

The first order inclusion probability of unit kK €U is denoted 7,

and d, = 7,* denotes the corresponding design weight. Also, let Z,
(k € r) denote a known instrument vector with the same dimension
as X, .Sdarndal and Lundstrém (2005) defines the calibration
estimator

Yy = Zr Wi Yy (2.1)
where the calibration weights are defined by the system

w, =d, v,
v, =1+ 4,2, (2.2)

X =Y WX,

Statistics Sweden 11



The calibration estimator ~ Consistent Calibration Estimation under Nonresponse

This system yields A, = ()—(~ - > dX, )t (Zr d, z, %, )_l.

The calibration system (2.2) with z, =X, is derived by Deville and

Sarndal (1992) in the full sample case by minimizing the Lagrange
function

L(w, 4) = (W, —dk)z/dk +ls()z —ZSWka)

yielding the generalized regression (GREG) estimator. Following
their results, implementing the weights defined by (2.2) in (2.1)
yields

Yo = ~tér +Zrdk(yk _Xliér) (2.3)

where

ér = (Zrdkzkxlt( )7lzrdkzk Yk (2.4)

Consistency of the calibration estimator (2.1) is here treated by
studying the asymptotic properties of (2.4). The following
definitions are used for the study of consistency.

Definition 1: (Sequence of populations)
The variable vector t, = (yk X, Zy )t is non-random, real-valued

and defined for a bounded set such that ||'[k || <k forsome 0<x <.
Assume existence of an infinite sequence {tk }:;l . The population U
is defined as the index set for the first N units in the sequence {t, }le
with the associated set of variable vectors {tl t, - 1y }

Definition 2: (Sequence of response sets)
A probability sample S, U, of expected size n(N) is drawn from

U using a probability sampling design Py (S), yielding positive
inclusion probabilities 7, >¢ >0 for all k €U, . Conditionally on
the sample, observations of t, are obtained for a subset of the sample,

Iy € Sy due to non-response. The response set I is generated

12 Statistics Sweden



Consistent Calibration Estimation under Nonresponse — The calibration estimator

according to the response distribution gy (I |SN ) yielding response

probabilities 6, =Pr(k €, |k €Sy)-

Definition 3: (Consistency)

Let i denote an estimator of a population quantity y defined on
the finite population U . For the sequences of populations, samples
and response sets in Definition 2, let 7 v and ¥y (N=123,..)

denote corresponding sequences of {7 and i, respectively. Then
is defined as consistent for y if

p IimNaoo(lr/;N -yy)=0

A sequence of populations of the kind specified in Definition 1 is
usually adapted when considering asymptotic properties of statistics
in finite population settings (e.g. Sarndal et al. 1992; Fuller, 2009).
The assumption of having a sequence of populations where the
increase in size is obtained by adding new units to the previous
populations is not, however, necessary for the theoretical arguments

to hold. The assumption of a real valued t, means the elements can

be real valued, but they can also take on values within a subset of
the real numbers, e.g. the natural numbers. The limit statement in
Definition 3 is in terms of a population size N approaching infinity,
and not in terms of the sample size n. Due to the lower bound on the
inclusion probability in Definition 2, the expected sample size will
approach infinity when the population size does so.

Statistics Sweden 13
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Consistent Calibration Estimation under Nonresponse Consistency

3. Consistency of the
calibration estimator

Consider a census in which all units in the population are sampled.
Then due to non-response the sums involved in the r.h.s. of (2.4) has

t t
expected values Eq(r\U)(ZU Z, X, ): Zu 6.z,x, and

E, (r‘u)( E Z.Y, )= ZU 6,2, Y, , respectively. These quantities define
the parameter vector

B, = (Zu szkxlt( )_1Zu gkzk Y (3.1)

Under a general sampling design, complying with Definition 2, the

following theorem states B, to be consistent for B,.

Theorem 1: (Probability limit for é, )
Assume definitions 1 and 2 and let éNr and By, denote

corresponding sequences of |.3>r and B, respectively. Also assume 1)
the sampling design yields second order inclusion probabilities

7y =Pr(k &l € s) such that N’ZZZ |7zk,dkdI —1| =0(1) and ii)

U k=l

N~ ZUN 60,2, %, has a determinant bounded away from zero for

N > N,, then

plim,_(By, —By,)=0

N—ow

A proof of Theorem 1 is given in the Appendix and it yields the

following result for the calibration estimator Y, .

Corollary 1: (Consistency of YAW )
Under the assumptions of Theorem 1, the assumption z'z, =1 for
all k eU y and some nonzero vector z, and

plim_ (Xy —=Xy)/N=0, then

Statistics Sweden 15



Consistency Consistent Calibration Estimation under Nonresponse

A

plimy . (Yyw —Yno)/N=0.

N—o0

where Y, = X By, -

Corollary 1 follows from Theorem 1 and the consistency of X . The
condition g'z, =1 implies Zr d, (y, =X ér) =0 in (2.3), and the
corollary shows the calibration estimator (2.1) to be consistent for
Y, = XB,, which is different from the population total Y = Zu Yy

in general. The assumption 'z, =1 implies Y = XB,, where

B, = (ZU Z, X, )_l ZU Z, Y, - The result then yields the approximate

bias expression
Bias(Y,,) ~ X (B, - B, )

which is one of the three equivalent nearbias expressions derived by
Sarndal and Lundstrém (2005, Corollary 9.1). Here Corollary 1
shows that the inconsistency of the calibration estimator can be

interpreted as a consequence of the inconsistency of B, as an

estimator of B .

An interesting problem is the restrictions imposed by the condition
4'2, =1 on the consistency property of the calibration estimator.

Consistency of B, is obtained under the following instrument
variable condition:

Instrument Variable Condition: Zu 6.z =0 ;e =Y, —%By,
Adding the condition 'z, =1 yields Zu 6., =0, i.e. the response

probabilities are uncorrelated with the regression errors in the
population. Thus, consistency of the calibration estimator (2.1) via

consistent estimation of B, cannot generally be achieved under the
condition ,ut Z, =1. On the other hand, relaxing the condition does
not improve the matter, since Y = X ‘B, does not generally hold if

'z, #1. Relaxing 4'z, =1 and with |_3>r consistent for B, then
(2.1) is consistent for

16 Statistics Sweden



Consistent Calibration Estimation under Nonresponse Consistency

Yie = XIBU +Zu 0, (Vi _XiBu)

This quantity is equal to Y if ZU (1-6,)e, =0, where ZU e, #0 in

general.

Consistency of YAW can be obtained in cases with B, # B, . For
instance, the result of zero “nearbias” of the calibration estimator
under g'z, =1 and the additional assumption ¢, =6,' =7'z, , for
some vector of constants 77, is derived by Sarndal and Lundstrom
(2005, Prop. 9.2). Consistency is obtained since B, satisfies

ZU 0, (Y, —%.B,)z, =0 and multiplying from the left with 7' yields
Zu (Y, —XB,) =Y — X'B, =0. Furthermore, by relaxing x'z, =1
and assuming ¢, =1+7'z, yields Zu 0. (Y, —%B,)(¢ -1 =0,

implying Y = X'B, + ZU 6, (Y, — % B,) and consistency of YAW .

Consistency of YAW under the assumed functions for ¢, can also be
obtained by the result plimy, A, =7 (Kott and Chang, 2010). This

result implies V, in (2.2) to be consistent estimates of ¢, . The linear

N—o0

form assumed for ¢, is restrictive and more general forms of

functions are considered by Kott (2006), Chang and Kott (2008) and
Kott and Chang (2010).

Statistics Sweden 17
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Consistent Calibration Estimation under Nonresponse A modified estimator

4. A modified calibration
estimator

Schouten (2007) makes use of a super population model approach
and shows zero bias of the GREG estimator under a MAR (Missing
at Random) response mechanism. The MAR condition implies
conditional independence of the response and the study variable,

given a set of auxiliary variables. Treat z, and €, as realizations of
the random variables z and ¢, respectively, and interpret the
response indicator R, = l(k € I’|k € S) as a realization of the random
indicator variable R. Then one interpretation of the MAR condition
is E(Rze) = E, (ZE(Re|Z)) =0, which would imply zero expectation
of the sum of Rze over a selected sample. The instrument variable
condition ZU 6.ze = E(ZU R,z ): 0 can thus be seen as a MAR
condition in the pseudo randomization setting. An important
distinction is that the MAR condition puts restrictions on individual

observations, while the instrument variable condition puts a
restriction on a vector sum over the units in the population.

One way of defining an estimator B, consistent for B, is to find an

instrument vector satisfying the instrument variable condition.
Unfortunately, this is not sufficient for consistency of the resulting
calibration estimator, as shown in the previous section. To solve the
dilemma a calibration estimator defined with two instrument
variable vectors is suggested. The first is denoted as z, and is

assumed to satisfy the instrument variable condition, and the second
is denoted as z,, assumed to satisfy the unity condition u'zg =1.
The second instrument vector is utilized for defining the population

. t Y2
regression vector B (z;) = (ZU Zg Xk) ZU Zg Yy - (An argument (
Z ) is introduced to stress the dependence on the chosen instrument
vector.) The first instrument vector then yields an estimator

5 -1 o . L
B, (z) = (Zr dkzkxﬁ) zr d,z,y, which is consistent, since it is
assumed to satisfy the instrument variable condition. The calibration

Statistics Sweden 19



A modified estimator Consistent Calibration Estimation under Nonresponse

estimator suggested is \?MW =X! I_3>r (z) which in the weighted sum
form equals

YAWM (Z) = Zr WMk(Z)yk (4.1)

with weights

~ 1
Wy, (2) = Xt(zrdkzkxlt() d, z,

The weights W,, (z) are defined in Sdrndal and Lundstrém (2005,

Sec. 6.8) and by them suggested to constitute the main part of the
weights given by (2.2). They also notice that the weights given by

(2.2) reduce to the weights W, (z) under the condition x'z, =1.
Here, the weights are suggested for the calibration estimator
irrespective if the condition 'z, =1 is satisfied or not. It can be

noted that estimator (4.1) is a “synthetic” estimator, which is biased
in general (e.g. Lehtonen and Pahkinen, 2004, p. 198). However,
under appropriate selection of instrument variables, the synthetic
estimator (4.1) is consistent for an unbiased instrument variable
GREG estimator.

A simple example of the estimator is Zy, = X, , where the auxiliary
vector includes a constant term, and z, = ¢, X, . Then Y = X'B ()
and ér (#x) is consistent for B, (x) by Theorem 1 and since

ZU 6.z.e = ZU X, &, =0.Then YAWNI = Xtér (¢x) is consistent for Y
by Corollary 1.

The two sets of instrument variable vectors considered are below
named as Theoretical instruments (Zg, ) and Operational instruments (

Z,). In the example above, the theoretical instruments were chosen

as the known and observable vector X, . In general the theoretical
instruments can be unobservable, theoretical concepts.

In practice it is likely that the operational instruments are calculated

from the data at hand, e.g. the response set or the sample, providing
“approximate” instruments or estimated instruments. In the

20 Statistics Sweden



Consistent Calibration Estimation under Nonresponse A modified estimator

propensity scoring example above, i.e. ér ((ZX) , the inverse response
probability are replaced by estimates ¢?k yielding a propensity

scoring estimator ér (gzZX) of B, (X), and not the estimator |_5>r ().

Thus, the consistency property of the calibration estimator (4.1) has
to be considered when it is defined with such “estimated”
instruments. For this, the following definition and assumption are
made.

Definition 1A: (Sequence of populations)
The variable vector t, = (yk X, Z, Iy )t is non-random, real-

valued and defined for a bounded set such that ||tk || <k for some
0 < k <. Assume the existence of the infinite sequence {tk }:;1 . The
population U is then defined as the index set for the first N units

in the sequence {tk }:;1 with the associated set of variable vectors

{tl t, - tN}'

Assumption 1: (Uniform convergence of estimated operational
instruments Z,)

Let Z, (k er) denote estimates of the corresponding unknown

vectors Z, (K e r) . For sufficiently large N, ||Z, — Zk” <Ma, where

M is a finite positive constant, and @y =0,(1) is a random scalar

term.

If |.3>r (Z) is consistent for B,(z) and B,(z) equals B, (z;), then
ér (Z) is consistent for B, (z;) whereby consistency of the

calibration estimator (4.1) is obtained. The probability limit of ér (2)
is stated in the following theorem.

Theorem 2: (Consistency of B, (2) for B,(2) )
Assume definitions 1A and 2, and let B, (Z) and B, (z;) denote

corresponding sequences of |.3>r (Z) and B (z;). Assume
Assumption 1, i) the sampling design yields second order inclusion

Statistics Sweden 21



A modified estimator Consistent Calibration Estimation under Nonresponse

probabilities 7,; = Pr(k &1 €s) such that
N~ Z ZUN e |7rk,dkd, —ﬂ =0(1), and ii) the determinant of

D, 6.2,% is bounded away from zero for all N > N, then

p IimN—)w(éNr(z) —By,(2))=0

A proof of Theorem 2 is given in the Appendix. Theorem 2 gives the
following corollary.

Corollary 2: (Consistency of YAW,\,I )

If B,(z) =By (z3) and the assumptions of Theorem 2 and the
assumption p IimN%O()ZN — Xy )/ N =0 holds, then
plim, . Yy —=Yn)/ N =0.

where Y,y = X 'By, (Z).-

Corollary 2 establishes the consistency of the calibration estimator
(4.1) as an estimator of the population total Y.
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5. Examples

The modified calibration estimator suggested in Section 4 is here
illustrated with two examples of operational instrument vectors. The

first is the case considered above using z, = @, X, . The second uses

instruments derived from a specification of an assisting model for
the response set data. For both cases the theoretical instrument

vector is defined as Zg, = X, . A numerical illustration of the
performance of the estimators is presented in the end of this section.

5.1 Instruments by weighting auxiliary variables
Consider the response probability function 6, = G(U,a,) where U,
is a real valued bounded vector (||uk || < kK <), known for units in

the sample, and ¢, € A is a corresponding real valued vector of
unknown, fixed parameters, taking on a value within a bounded
parameter space A. The length of U, is assumed fixed and G(U,@),
a € A, is assumed bounded away from zero and one, i.e.
0<7,<G(ua)<r, <1, forall keU.

With a sampling design, consider the design weighted log likelihood
function

(@) =Ny (dkRk log(G(u,@)) +d, (1- R, ) log(L—- G(uﬁa)))
and the design weighted maximum likelihood estimator

a, = argmax|, («)
Consistency of &, implies Assumption 1 since

‘G (ua,)™ - G(uiao)_l‘ <72 |u|-]|és — @ - A formal proof of the

consistency of @, is out of the scope of this paper. However,
consistency can be derived by showing uniform convergence in
probability of | (&) to

Statistics Sweden 23
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ly (@) = E(I,()) = N7 6, 10g(G(u,@)) + (1~ 6,) log(L - G(u,))

a function that is uniquely maximized over A at a = &, for

sufficiently large N. Consistency of ¢, can then be established by
similar arguments as in the proof of Lemma 2.2 in White (1980).

5.2 Assisting model for response set data
The assisting model underlying the GREG estimator is of the form

Y, = X, B, +€,, where the properties of the “errors” €, are defined

by the definition of B, . With B, being the population least squares
(LS) solution, the corresponding design weighted LS solution for a
sample under full response is consistent for By .

For observations obtained in a response set r, consider the assisting
model Y, = XB, +7, + @, . Here, 7, is defined as a “systematic”

component such that ZU OXxn, = ZU 6.x.e, and @, is an

“irregular” component such that ZU 0. x.o, =0 and

ZU ono, =0.

For the population, consider the instrument z, = X, —77,0 , where

-1 : . L
0= (ZU 0.1} ) ZU 6,1.X, is a vector with population fits of &
weighted, through the origin, least squares regressions of the
elements in X, on 77, . Note here that ¢ is a vector with a slope

coefficient for each element in X, . These instruments have the

property ZU 6,2, (17, + ®,) =0 whereby B, (z) is consistent for By .

Unfortunately 7, is not observable. However, assume 77, can be
described by a function known up to a finite set of coefficients, e.g.
n, =n(u,,a,), where the arguments are defined as in subsection

5.1. Also, assume there exists a consistent estimator ¢, of ¢, . Then
instruments can be formed by 7, = X, — 7,0 where 1, =n(U,,a,)

and & = (Zr 0.1} )_l D", 673 %, - Under suitable assumptions, e.g.
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Consistent Calibration Estimation under Nonresponse Examples

boundedness of 7, =71(U,,@,) and existence of Zu o0nz,

plim,__ oJy =0 and Assumption 1 holds for the instrument vector
Z, =% —1,0. ér (Z) is then consistent for B, and the calibration

estimator (4.1) is consistent for the population total Y .

One alternative for the specification of the function 7, =7(U,,¢,) is
provided by Heckman (1979) where n(U, ,a) = f (Uya)/ ®(u,a),

the ratio of the standard normal pdf to its cdf. This function is
derived from assuming a probit model for the response probability

function, e.g. 6, = (U, a,) = E(U,, + ¢, > 0|uk) with ¢ ~ N(0,1),
and €, assumed to be a realization of a normal distributed random
variable. The normal distribution assumption for €, can be replaced
by the moment assumption E(e, |Rk =1¢,) = pp, (Wooldridge,

2002). Estimates ¢, can be obtained by applying the design
weighted ML estimator defined in the previous subsection.

5.3 Numerical illustration

A small simulation study is used to illustrate the empirical
properties of the estimator (4.1) based on the instruments considered
in subsections 5.1 and 5.2. The instruments are derived using

6, = ®(u,) and (U, a) = f (U, &)/ ®(u, ), respectively. For
both cases the design weighted probit ML estimator ¢, is used.

Population data is simulated from the following model:

y=p,+BX+¢ (6.1)

Ri=a,+a,y+a,u+¢

where y represents the variable under study, x and U are auxiliary

variables with known population totals and R is a variable

generating a response if R” >0 and a non-response if not. The
variables x and U are independently generated from uniform

distributions in (0,2\/§ ), yielding E(x) =E(u) = V3 and
V(x) =V (u) =1. The variables & and ¢ are independently
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generated from distributions with zero means and variances 1. The
parameter ¢, is set to control the correlation between V=a,& + ¢
and &, governing the strength of the relation between the study
variable and the nonresponse mechanism. The parameters £, and
a, are used to control the population R’s in the regression model for
the study variable and the regression of R” on x and U. Finally,

B, =5 while «, is used to control the response rate. The following
two sets of population models are used in the simulations.

i) Population model Norm( & )/Norm( ¢ ): The population R’s in the

regression model for the study variable and in the regression R
on X and U, are both 0.5. The variables & and ¢ are both
generated from normal distributions. Expected response rates are
60%.

ii) Population model Unif( & )/Unif(u): As in i) but with & and ¢
generated from uniform distributions. Response rates are around
58%.

For each of the two population models, finite populations
U, cU, cU, cU,of sizes N=2000, 5000, 10000, 20000 units are

generated. For the generated populations, samples of sizes n=N/10
are drawn with SRS, without replacement, and response sets are

generated using the generated values on R". For each generated
population, samples and response sets are replicated 1000 times.

For comparison, the calibration estimator (2.1) is applied in two
versions; one using the auxiliary vector (1, X) and one using the

auxiliary vector (1, X,u). These calibration estimators are applied
with standard weights, i.e. Z, = X, . For the estimator (4.1), the
auxiliary vector (1, x) is used and the instruments defined in
subsection (5.1) and (5.2) are constructed using

¢ =11 D(a,, + ayX+ag,u) and 17 =1(dy + Ay X+ a,U),
respectively.
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Table 1:
Simulated Bias and St.dev (in parenthesis) of the population mean

calibration estimators Y, :YAW IN and Y,,, =YAW,\,I (z2)/ N (c.t.

equations (2.1) and (4.1), respectively). Population generated from the
population model Norm( & )/Norm(u), for different sample sizes n and

correlations p =Corr(v,&) (c.f. model (5.1)). Results based on 1000

replications
Sample/Population size (n/N)

Estimator® P 200/2000 500/5000  1000/10000  2000/20000
> 0 -.034 017 -.004 007
Y (D) (.090) (.058) (.039) (.028)
0.1 013 067 043 050
(.090) (.058) (.039) (.028)

03 115 164 150 152
(.092) (.058) (.038) (.028)

5 0 -.026 .008 004 010
Y (X2) (107) (072) (.045) (.033)
0.1 048 079 074 073
(111) (071) (.044) (.033)

03 198 218 212 212
(.108) (.065) (.042) (.031)

> 0 -.035 002 010 .009
Yo (21) (.126) (.086) (.047) (.037)
0.1 035 075 079 072
(.125) (.083) (.048) (.037)

03 197 226 218 226
(.120) (074) (.046) (.037)

5 0 -.048 035 -.020 002
Yun (22) (.139) (.084) (.060) (.042)
0.1 -.046 049 -016 010
(142) (.086) (.060) (.042)

03 -.078 052 _011 003
(.158) (.095) (.067) (.047)

® Auxiliary/Instrument vectors: x1=(1 x)', x2=(1 x u)', z1= @ x1, z2= x1- O7] .

Statistics Sweden 27



Examples Consistent Calibration Estimation under Nonresponse

Table 1 includes simulation results under the Norm( & )/ Norm(¢)
model, meaning that the assumptions of the model considered by
Heckman (1979) are satisfied. The calibration estimator (4.1) based
on the instrument variables considered in subsection 5.2 is therefore
expected to perform well with regard to bias.

In the case of p =0, implying independence between the response

indicator and the study variable, all estimators in Table 1 have
biases tending to zero when the sample size increases. The standard
deviations for all the estimators also decrease with the sample size,
which is also observed for the other values of p . The results

observed for all estimators are compatible with an expected pattern
of consistent estimators when p =0.

Also as expected, when p =0.1 or p=0.3 this “consistency

pattern” is only observed for the estimator YAW,\,I (z2) . For the other

estimators, the standard deviations decrease with the sample size,
but the biases do not. The observation is also that the biases are
increasing with p for these estimators.

The consistency property of the estimator YAW,\,I (z2) comes at the
price of a larger variance then the other estimators. The RMSE of

YAW,\,I (z2) is around 50% higher in comparison with YAW (x1) for p=0

.For p=0.3 the RMSE is smaller for YAW,\,I (z2) compared to YAW (x1)
with the exception of the n=200 case, where the RMSEs are about the

same. For the two smallest sample sizes when p=0.1, YAW (x1) has
smaller MSE then YAW,\,I (z2), while it is about the same for n=1000
and smaller for YAWM (z22) when n=2000.
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Table 2:
Simulated Bias and St.dev (in parenthesis) of the population mean

calibration estimators Y, :YAW IN and Y,,, =YAW,\,I (z2)/ N (c.t.

equations (2.1) and (4.1), respectively). Population generated from the
population model Uniform( & )/Uniform(u), for different sample sizes n
and correlations p = Corr(v, &) (c.f. model (5.1)). Results based on

1000 replications

Sample/Population size (n/N)

Estimator® P 200/2000 500/5000  1000/10000  2000/20000
> 0 -010 012 017 001
Y (D) (.086) (.054) (.039) (.029)
0.1 039 059 059 047

(.086) (.054) (.039) (.029)

03 116 155 154 152

(.086) (.054) (.039) (.028)

5 0 -032 007 018 -.002
Y (X2) (.098) (.061) (.044) (.033)
0.1 044 071 078 060

(.097) (.061) (.044) (.032)

03 136 103 104 190

(.094) (.060) (.042) (.031)

’ 0 -036 005 019 ~002
Yo (21) (.106) (.067) (.048) (.035)
0.1 047 077 082 064

(.102) (.067) (.047) (.035)

03 154 206 209 207

(.096) (.064) (.043) (.031)

5 0 046 026 013 007
Yun (22) (.136) (.086) (.060) (.045)
0.1 026 028 017 017

(.143) (.087) (.061) (.045)

03 033 032 033 025

(.165) (.099) (.067) (.051)

® Auxiliary/Instrument vectors: x1=(1 x)', x2=(1 x u)', z1= @ x1, z2= x1- O7] .
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Although the assumptions in the model considered by Heckman
(1979) are not satisfied in the Uniform( ¢ )/Uniform(¢) case
considered in Table 2, the results show a similar pattern as the one
in Table 1. All estimators have decreasing biases and standard
deviations as the sample size increase in the p =0 case. For the

other values of p this is only observed for YAWM (z2) . However,

YAWM (z2) is not consistent in the Uniform( & )/ Uniform(¢) case, a fact
indicated by the slight increase in bias for increasing p . Still,
estimates of the bias are much smaller than those of the other

estimators. The pattern of RMSE for YAW,\,I (z2) in comparison with

YAW (x1) is the same in Table 2 as in Table 1.
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6. Summary

This paper is concerned with the consistency properties of the
calibration estimator suggested by Lundstrém and Sarndal (1999)
and Sarndal and Lundstrém (2005). It is shown that the calibration
estimator is generally inconsistent. This does not come as a surprise
since the estimator is already known to have a non-zero
approximate bias. Efforts have also been made in the literature to
find ways of selecting auxiliary information in order to reduce bias
as much as possible. In these contributions, the calibration estimator
considered has been based on “standard weights” where the
auxiliary vector is used as the instrument vector.

The prospect of defining a generally consistent calibration estimator
based on a standard weights formulation is limited. The auxiliary
variable vector does not generally satisfy the instrument variable
condition, and the success of reducing bias in the standard weight
version of the calibration estimator depends on how well the
auxiliary variables i) “explains” the variation in the study variable,
and ii) how well a linear combination of them approximates the
inverses of response probabilities (Sirndal and Lundstrém, 2005).
Similar results are presented by Schouten (2007), who derive bounds
on the bias of the GREG estimator in terms of correlations between
auxiliary variables and the study variable, and between auxiliary
variables and the response indicator.

Instead of the standard weight formulation, it is here suggested to
place focus on the potentials of defining an instrument variable
vector different from the auxiliary variable vector. Rewriting the
calibration estimator in terms of a GREG estimator formulation, the
non response bias can be interpreted in terms of a correlation
between auxiliary variables (regressors) and the regression error
term. Adapting the idea of instrument variable estimation suggests
finding an appropriate instrument vector for the calibration
estimator. However, for this approach to work the formulation of
the calibration estimator must be modified as suggested.

Two examples of instrument vectors for the proposed calibration

estimator are given in the simulation presented. The purpose of the
simulation study is to provide an indication of the potentials of the
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suggested estimator. The instrument vectors considered are mere
illustrations, not suggestions for general use. More work is needed
for defining instrument vectors which satisfies the instrument
variable condition under more general population and response
distribution settings. An encouraging fact is that the instrument
variable condition imposes restriction on a fixed and small number
of weighted population covariances, and may be satisfied without
consistent estimation of parameters for each unit in the response set.
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Appendix

The proofs of theorems 1 and 2 utilize the following lemma.

Lemma 1:
Under definitions 1 and 2, and the assumptions in Theorem 1,

consider the statistic 7, = N 7lzr d.c,, where ¢, (k=1...,N) are
non-random real valued scalars, bounded by |Ck| <Kk <. Then
plimy_,, Wy —wy,) =0 where y, =N _lZUN O.C, -

Proof of Lemma 1:

The design weight d, is bounded by assumption whereby ¥/,

exists. Using the sample inclusion indicators |, =1(k € ) and the
response indicators R, =1(k  r|k €s), the expected value of 17, can
be expressed as E(y7, )= N 0, E(I.R M.c, = N’leN 6,C, =Wy -

For the variance of ¥/,

N2, 706+ Y ma(mm) 0006 -2 8668
=N- (Z 0. —0)c2+2 > [ (mm) 1) bc c)
<N7¢ 11(2 +x°N” ZZUN,k¢I|ﬂkldkd| —]4=0(1)

Thus, V (¥, ) = 0 when N — . Chebychev’s inequality then provides
with the result in the lemma.

Proof of Theorem 1.

Note that E(N _lzrn d, 2, X, ): N~ ZUN 0,z,%, has a determinant
bounded away from zero for N > N . This implies that B,, exists
and is bounded. The regression error €, =Y, — X, By, is then also
bounded since t, is assumed bounded. Lemma 1 gives

pIimN%(N 1 dezx —-NTY ekzkx;)zo whereby the

estimator |.3>Nr will also exist for N sufficiently large. The estimator

can be written as
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By, = By, + (N 4er d .z, % TlN ‘1Zm d.z.e,

Here E(N _lzrn d,ze,4 )= N _IZUN 6,2, =0,since By, is the
solution to the moment condition ZU 0.2, (Y, —XBy,) =0. Again

using Lemma 1, plim N _1Zr d,z,e, =0. Proposition 2.30 in

N—o0
White (2000) then yields

plimg_, (N ’lzr d .z, x; )1 N ’1Zr d,z,e, =0 and the statement in
the theorem is obtained.

Proof of Theorem 2.
The estimated operational instruments are uniformly bounded

||’Z'k - Zk” <M -, by assumption. Consider

Auy =N dxg (Z =2 ) S NP difxy|-M -y =0,(D),
where X,; denotes the jth element in X, . Thus

N _1Zrn d,Z, % — N _1Zrn d,z, X, =0,(1). By applying Lemma 1
N 7125 d.z.x, —N ’leN 6,2.% =0,(1) . Combining these two

results in the triangular inequality yields
N _1Zrn dzx —N* ZUN 6,2 % =0,(1) . Using similar derivations

the result N _1Zr d.z.y,—N _lzu 6,2,y =0,(1) is obtained. The

inverse of N ’lZUN 6,2, %, is assumed to exist for N > N, implying
the existence of the solution By,(z). Since
N 7125 d z.x —N ’IZUN 0,2,% =0,(1) this implies that érN (Z)

also exists for all N sufficiently large. Finally, using Corollary 2.30 in
White (2000) on the results derived yields the result

p IimN»m(éNr(Z) —By,(2))=0.
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